Software Development (CS2500)

Lecture 39: Combining Sound and Graphics

M.R.C. van Dongen

January 28, 2011

Contents

1 Outline I

2 An Animation I
20 FirstAttempt e 2
2.2 FixingtheProblem 3

3 Non-Gul Events 4
3.0 Controller Events ittt 4
32 Implementation 5

4 Sound and Graphics -

s For Monday I

1 Outline

In this lecture we shall start by implementing a computer-based animation. Next we shall implement an
application that combines graphics and sound. As in Lecture 38 our final implementation relies on inner
classes.

2 An Animation

In this section we shall create a computer-based animation. As with the previous two lectures we shall
base our solution on event handlers.

The animation consists of a circle which moves along a line for a number of iterations. The following
is what we’ll do.

o We create a main class that creates an animation ObjCCt.

o The object has a panel and the circle’s x and y coordinates.
e The object uses a for loop.
e In cach iteration the loop does the following:

- Itincreases the x and y coordinates.
— It repaints the panel attribute of the animation object.

— It sleeps for a short time. Here sleeping for a number of milliseconds means that the program
suspends itself for that number of milliseconds. After the suspension, the program resumes as

normal.
e An inner class represents the animation’s pannel.

e The inner class extends JPanel and overrides paintComponent(). This lets it draw the circle at

different positions.

2.1 First Attempt

The following is the start of a first attempt to implementing the application. We’ve seen all of this several

times before, so you should be able to understand this without too much effort. The import statements
have been omitted for simplicity.
Java

public class SimpleAnimation {
private static final Random rand = new Random();

private JPanel drawPanel;
private int x;

private int y;

public static void main(String args[]) {
SimpleAnimation animation = new SimpleAnimation();

animation.draw();

// Rest in next listings.

The variable drawPanel is an instance variable of the SimpleAnimation class, which is shown in the
next listing. Remember that instance variables of a class can be seen by the inner classes of that class. This
explains why drawPanel can be seen int the inner class MyDrawPanel, which extends JPanel.

The following is the constructor of the class SimpleAnimation. All it does is setting up the JFame,
construct the instance of the inner class MyDrawPanel, and add the MyDrawPanel to the JFrame.

private SimpleAnimation() { Sava

JFrame frame = new JFrame("Moving Dot");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
drawPanel = new MyDrawPanel();

frame.getContentPane().add(drawPanel);
frame.setSize(300, 300);

frame.setVisible(true);

The following are the remaining methods, except for the method handleException() which has
been omitted. The method Thread.sleep() does the sleeping. The sleeping is implemented by a call to
the class method Thread.sleep(), which may throw an exception. This explains the try-catch block

because the exception should be caught and handled. The inner class is presented in the next listing.

private void draw() { Java

final int MAX_DOTS = 80;
final int MILLI_SECONDS = 50;
for (int circleCount = 9;
circleCount != MAX_DOTS;
circleCount ++) {
X ++;
y ++;
drawPanel .repaint();
sleep(MILLI_SECONDS);

private static void sleep(int milliSeconds) {
try {
Thread.sleep(milliSeconds);
} catch (Exception exception) {
handleException(exception);

The following is the inner class. As you see, it is pretty simple.

private class MyDrawPanel extends JPanel { Save

@Override

public void paintComponent(Graphics g) {
final int RADIUS = 40;
g.setColor(Color.GREEN);
g.fillOval(x, y, RADIUS, RADIUS);

But, horror of horrors.... When we run the application it draws a sequence of circles which appear as
a thick line on the screen.

2.2 Fixing the Problem

The source of the problem in the previous section is easy to find. The line is a sequence of partially
superimposed circles which appears as a line on the screen. We forgot to erase the previous circle in the
method paintComponent() in the inner class. To solve the problem we erase the current circle by filling

the JPanel with white. Next we draw a new circle in green. The following shows the implementation.

private class MyDrawPanel extends JPanel { Save

@Override
public void paintComponent(Graphics g) {
final int RADIUS = 40;
g.setColor(Color.WHITE);
g.fillRect(@, @, this.getWidth(), this.getHeight());
g.setColor(Color.GREEN);
g.filloval(x, y, RADIUS, RADIUS);

Note that the this. notation isn’t really needed. However, it is included here to make explicit that
the methods getwidth() and getHeight() are instance methods which return the width and height
of the current MyDrawPanel instance. The MyDrawPanel inherits these methods from the JPanel class.

3 Listening to Non-GUI Events

In this section we shall implement an application that listens to non-Gul-based events. The following is
what we do.

o We create a sequence of notes using MIDI.
e Each time there’s a new note we print some text.
e This is implemented using an event listener.

o The listener listens to “MIDI” events but the mechanism is the same as for GUI events.

e The kind of event we’re looking for are Controller events.

3.1 Controller Events

Controller events are generated by Sequencers. The event is triggered when a Sequencer encounters
and processes a control-change event. The control-change event corresponds to the message type Short-
Message. CONTROL_CHANGE. The messages are added to the Track each time we start a new note.
When the Track is played the relevant listeners are informed about the Controller event.

Registering Controller event listeners is as usual. However, this time we need to register a Con-
trollerEventlListener and these listeners have special needs which are passed as an additional argu-
ment to the method that does the registering. The method addControllerEventlListener registers

ControllerEventlListeners. It is the equivalent of the method addActionListener for ActionEvents.

int[] addControllerEventListener(ControllerEventlListener listener, Jave

int[] controllers)

This registers a ControllerEvent listener. The listener is notified of control-change events of certain
types. The types are specified by the argument controllers; this should be an array of MIDI controller
numbers. Each controller number should be between @ and 127, inclusive. The returned array consists of
the possible MIDI controller numbers for which the listener may now receive events. The listener class
should override the method controlChange(). Overriding controlChange() is similar to overriding
actionPer formed().

The following shows the registering of the event listener part.

private static final int CONTROL_CHANGE = ShortMessage.CONTROL_CHANGE ;
private static final int CONTROLLER_TYPE = 127;

Java

int[] ints = new int[] {CONTROLLER_TYPE};
sequencer .addControllerEventListener(panel, ints);

Each time we play a new note, we also add a control-change message to the track. The following
shows how it’s done. The method addMidiEvent() is the same as the one we implemented last Friday.
You may look it up in the lecture notes of Lecture 36.

addMidiEvent(track, CONTROL_CHANGE, 1, CONTROLLER_TYPE, @, tick);

Java

The ControlEvent listener should override the method controlChange().

X J
@0verride ava

public void controlChange(ShortMessage event) {

System.out.println("Do, re, me, fa, so, la, ti, do");

3.2 Implementing the Application

The remainder of this section lists the details of the remaining methods.

public class SingingMusicPlayer implements ControllerEventlListener { Save

private static final int VELOCITY = 100;
private static final int ON = ShortMessage.NOTE_ON;
private static final int OFF = ShortMessage.NOTE_OFF;
private static final int CONTROL_CHANGE = ShortMessage.CONTROL_CHANGE;
private static final int CONTROLLER_TYPE = 127;
private static final int END_OF_TRACK = 47;
private static final String lines|[]
= { "Doe, a deer, a femal deer",

"Ray, a drop of golden sun",

"Me, a name I call myself",

"Far, a long, long way to run",

"Sew, a needle pulling thread",

"La, a note to follow Sew",

"Tea, a drink with jam and bread",

"That will bring us back to Do (oh-oh-oh)\n" };
private int line = 0;

// Rest in next listings.
}

Java

public static void main(String[] args) {
SingingMusicPlayer singer = new SingingMusicPlayer();
singer.play();

private void play() {

try {
Sequencer sequencer = newSequencer();
sequencer.open();
int[] ints = new int[] {CONTROLLER_TYPE};
sequencer .addControllerEventListener(this, ints);
Sequence seq = new Sequence(Sequence.PPQ, 4);
singSong(seq);
sequencer .setSequence(seq);
sequencer .start();
sequencer .setTempoInBPM(120);

} catch(Exception exception) {
handleException(exception);

private static void singSong(Sequence seq) Save

throws InvalidMidiDataException {
Track track = seq.createTrack();
int note = 64;
for (int tick = 0; tick < 60; tick += 4) {
addMidiEvent(track, ON, 1, note, VELOCITY, tick);
addMidiEvent(track, CONTROL_CHANGE, 1, CONTROLLER_TYPE, @, tick);
addMidiEvent(track, OFF, 1, note, VELOCITY, tick + 2);

note ++;

}

q Java
@0Override

public void controlChange(ShortMessage event) {
System.out.println(lines[line]);
line = (line + 1) % lines.length;

4 Combining Sound and Graphics

In this section we shall make some changes to the program from the previous section. Instead of printing
out text to the MIDI beats we shall generate a random rectangle which is coloured in a random colour.

We shall use an inner class for the event listener. The remainder of this section lists the main methods.
The techniques are different from the techniques listed in the book.

import java.util.Random; Java

import javax.sound.midi.x;
import java.io.x;
import javax.swing.x;

import java.awt.x;

public class MiniMusicPlayer {
private static final int VELOCITY = 100;
private static final int ON = ShortMessage.NOTE_ON;
private static final int OFF = ShortMessage.NOTE_OFF;
private static final int CONTROL_CHANGE = ShortMessage.CONTROL_CHANGE;
private static final int CONTROLLER_TYPE = 127;
private static final int END_OF_TRACK = 4T7;

private final JFrame frame;

public static void main(String[] args) {
MiniMusicPlayer mini = new MiniMusicPlayer();

mini.play();

// Rest in remaining listings.

The constructor is pretty much straightforward. The methodplay() issimilar to the implementation
from the previous section. However, this time it’s the instance of the inner class which is the listener. We
can get a reference to the instance of the inner class by applying the method frame.getContentPane().
This works because we set the content pane of the JFrame attribute frame using the call frame . setContentPane(
panel) in the constructor. In the book they have both a JFrame attribute and a MyDrawPanel attribute
in the outer class, but this is a bit redundant. Rather than exp/icitly representing the MyDrawPanel as an
attribute, our current solution represents it implicitly. To get the MyDrawPanel out application computes
the MyDrawPanel from the JFrame object.

private MiniMusicPlayer() { Java

frame = new JFrame("My First Music Video");

// Create inner class listener object.

MyDrawPanel panel = new MyDrawPanel();
frame.setContentPane(panel);

frame.setBounds(30, 30, 300, 300);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

private void play() {

try {
Sequencer sequencer = newSequencer();
sequencer .open();
MyDrawPanel panel = (MyDrawPanel)frame.getContentPane();
int[] ints = new int[] {CONTROLLER_TYPE};
sequencer .addControllerEventListener(panel, ints);
Sequence seq = new Sequence(Sequence.PPQ, 4);
singSong(seq);
sequencer .setSequence(seq);
sequencer .start();
sequencer .setTempoInBPM(120);

} catch(Exception exception) {
handleException(exception);

The following is the inner class.
private class MyDrawPanel extends JPanel it
implements ControllerEventListener {

// Class constants and instance attributes

private MyDrawPanel() {
random = new Random();
setRandomColour();

setRandomSizeAndPosition();

// Instance methods.

The main reason why the inner class is so large is that it extends JPanel and implements the Con-
trollerEventListener interface. It needs to override the method paintComponent() from the JPanel

class and the method controlChange from the ControllerEventlListener interface.

Note that the class MyDrawPanel extends a class and implements an interface.

The following are the class constants and instance attributes of the inner class. The class constants are
used to generate the random colours, the random width and height of the rectangle, and the random
position of the rectangle. The instance attributes determine the current colour, the current width and
height, and the current position of the rectang]e.

private static final int MAX_COLOUR_PART = 249; Java
private static final int MIN_SIZE = 10;

private static final int MAX_SIZE = 120;

private static final int MIN_POSITION = 10;

private static final int MAX_POSITION = 40;

private final Random random;

private Color colour;

private int width;

private int height;

private int xPosition;

private int yPosition;

Note that our solution uses a Random object whereas the book uses the static method random() from
the Math class. Using the Random object is much easier than using Math.random().

The instance methods setRandomColour() and setRandomSizeAndPosition() compute new ran-
dom values for the colour, the width and height, and the position of the rectangle. They do this by using
the auxiliary instance method randomSize(int min, int max) which computes a random int in the
range min—max.

private void setRandomColour() { Jave

int redPart = random.nextInt(MAX_COLOUR_PART + 1);
int greenPart = random.nextInt(MAX_COLOUR_PART + 1);
int bluePart = random.nextInt(MAX_COLOUR_PART + 1);
colour = new Color(redPart, greenPart, bluePart);

}

private void setRandomSizeAndPosition() {
width = randomSize(MIN_SIZE, MAX_SIZE);
height = randomSize(MIN_SIZE, MAX_SIZE);

xPosition = randomSize(MIN_POSITION, MAX_POSITION);
yPosition = randomSize(MIN_POSITION, MAX_POSITION);

private int randomSize(int min, int max) {

return random.nextInt(max - min + 1) + min;

The first of the following two method listens to ControllerEvents. When this method is called, we

I0

compute a new randomly coloured rectangle and draw it. The other method is called when the method
repaint() is called. It simply draws the current rectangle using the rectangle’s current instance attribute
values.

Java

@0verride
public void controlChange(ShortMessage event) {

setRandomColour();
setRandomSizeAndPosition();

repaint();

@0Override
public void paintComponent(Graphics g) {
g.setColor(colour);
g.fillRect(xPosition, yPosition, width, height);

s For Monday

Study the lecture notes, and study Chapter 11.

II

	Outline
	An Animation
	First Attempt
	Fixing the Problem

	Non-gui Events
	Controller Events
	Implementation

	Sound and Graphics
	For Monday

