
So�ware Development (cs2500)

Lecture 39: Combining Sound and Graphics

M.R.C. van Dongen

January 28, 2011

Contents

1 Outline 1

2 An Animation 1

2.1 First Attempt . 2

2.2 Fixing the Problem . 3

3 Non-gui Events 4

3.1 Controller Events . 4

3.2 Implementation . 5

4 Sound and Graphics 7

5 ForMonday 11

1 Outline

In this lecture we shall start by implementing a computer-based animation. Next we shall implement an

application that combines graphics and sound. As in Lecture 38 our �nal implementation relies on inner

classes.

2 An Animation

In this section we shall create a computer-based animation. As with the previous two lectures we shall

base our solution on event handlers.

�e animation consists of a circle which moves along a line for a number of iterations. �e following

is what we’ll do.

• We create a main class that creates an animation object.

1

• �e object has a panel and the circle’s x and y coordinates.

• �e object uses a for loop.

• In each iteration the loop does the following:

– It increases the x and y coordinates.

– It repaints the panel attribute of the animation object.

– It sleeps for a short time. Here sleeping for a number of milliseconds means that the program

suspends itself for that number of milliseconds. A�er the suspension, the program resumes as

normal.

• An inner class represents the animation’s pannel.

• �e inner class extends JPanel and overrides paintComponent(). �is lets it draw the circle at

di�erent positions.

2.1 First Attempt

�e following is the start of a �rst attempt to implementing the application. We’ve seen all of this several

times before, so you should be able to understand this without too much e�ort. �e import statements

have been omitted for simplicity.

public class SimpleAnimation {
private static final Random rand = new Random();

private JPanel drawPanel;
private int x;
private int y;

public static void main(String args[]) {
SimpleAnimation animation = new SimpleAnimation();
animation.draw();

}

// Rest in next listings.
}

Java

�e variable drawPanel is an instance variable of the SimpleAnimation class, which is shown in the

next listing. Remember that instance variables of a class can be seen by the inner classes of that class. �is

explains why drawPanel can be seen int the inner class MyDrawPanel, which extends JPanel.

�e following is the constructor of the class SimpleAnimation. All it does is setting up the JFame,

construct the instance of the inner class MyDrawPanel, and add the MyDrawPanel to the JFrame.

2

private SimpleAnimation() {
JFrame frame = new JFrame("Moving Dot");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
drawPanel = new MyDrawPanel();
frame.getContentPane().add(drawPanel);
frame.setSize(300, 300);
frame.setVisible(true);

}

Java

�e following are the remaining methods, except for the method handleException() which has

been omitted. �e method Thread.sleep() does the sleeping. �e sleeping is implemented by a call to

the class method Thread.sleep(), which may throw an exception. �is explains the try-catch block

because the exception should be caught and handled. �e inner class is presented in the next listing.

private void draw() {
final int MAX_DOTS = 80;
final int MILLI_SECONDS = 50;
for (int circleCount = 0;

circleCount != MAX_DOTS;
circleCount ++) {

x ++;
y ++;
drawPanel.repaint();
sleep(MILLI_SECONDS);

}
}

private static void sleep(int milliSeconds) {
try {

Thread.sleep(milliSeconds);
} catch (Exception exception) {

handleException(exception);
}

}

Java

�e following is the inner class. As you see, it is pretty simple.

3

private class MyDrawPanel extends JPanel {
@Override
public void paintComponent(Graphics g) {

final int RADIUS = 40;
g.setColor(Color.GREEN);
g.fillOval(x, y, RADIUS, RADIUS);

}
}

Java

But, horror of horrors…. When we run the application it draws a sequence of circles which appear as

a thick line on the screen.

2.2 Fixing the Problem

�e source of the problem in the previous section is easy to �nd. �e line is a sequence of partially

superimposed circles which appears as a line on the screen. We forgot to erase the previous circle in the

method paintComponent() in the inner class. To solve the problem we erase the current circle by �lling

the JPanel with white. Next we draw a new circle in green. �e following shows the implementation.

private class MyDrawPanel extends JPanel {
@Override
public void paintComponent(Graphics g) {

final int RADIUS = 40;
g.setColor(Color.WHITE);
g.fillRect(0, 0, this.getWidth(), this.getHeight());
g.setColor(Color.GREEN);
g.fillOval(x, y, RADIUS, RADIUS);

}
}

Java

Note that the this. notation isn’t really needed. However, it is included here to make explicit that

the methods getwidth() and getHeight() are instance methods which return the width and height

of the current MyDrawPanel instance. �e MyDrawPanel inherits these methods from the JPanel class.

3 Listening to Non-gui Events

In this section we shall implement an application that listens to non-gui-based events. �e following is

what we do.

• We create a sequence of notes using MIDI.

• Each time there’s a new note we print some text.

• �is is implemented using an event listener.

• �e listener listens to “MIDI” events but the mechanism is the same as for gui events.

4

• �e kind of event we’re looking for are Controller events.

3.1 Controller Events

Controller events are generated by Sequencers. �e event is triggered when a Sequencer encounters

and processes a control-change event. �e control-change event corresponds to the message type Short-

Message.CONTROL_CHANGE. �e messages are added to the Track each time we start a new note.

When the Track is played the relevant listeners are informed about the Controller event.

Registering Controller event listeners is as usual. However, this time we need to register a Con-
trollerEventListener and these listeners have special needs which are passed as an additional argu-

ment to the method that does the registering. �e method addControllerEventListener registers

ControllerEventListeners. It is the equivalent of the method addActionListener for ActionEvents.

int[] addControllerEventListener(ControllerEventListener listener,
int[] controllers)

Java

�is registers a ControllerEvent listener. �e listener is noti�ed of control-change events of certain

types. �e types are speci�ed by the argument controllers; this should be an array of MIDI controller

numbers. Each controller number should be between 0 and 127, inclusive. �e returned array consists of

the possible MIDI controller numbers for which the listener may now receive events. �e listener class

should override the method controlChange(). Overriding controlChange() is similar to overriding

actionPerformed().

�e following shows the registering of the event listener part.

private static final int CONTROL_CHANGE = ShortMessage.CONTROL_CHANGE;
private static final int CONTROLLER_TYPE = 127;

int[] ints = new int[] {CONTROLLER_TYPE};
sequencer.addControllerEventListener(panel, ints);

Java

Each time we play a new note, we also add a control-change message to the track. �e following

shows how it’s done. �e method addMidiEvent() is the same as the one we implemented last Friday.

You may look it up in the lecture notes of Lecture 36.

addMidiEvent(track, CONTROL_CHANGE, 1, CONTROLLER_TYPE, 0, tick); Java

�e ControlEvent listener should override the method controlChange().

@Override
public void controlChange(ShortMessage event) {

System.out.println("Do, re, me, fa, so, la, ti, do");
}

Java

3.2 Implementing the Application

�e remainder of this section lists the details of the remaining methods.

5

public class SingingMusicPlayer implements ControllerEventListener {
private static final int VELOCITY = 100;
private static final int ON = ShortMessage.NOTE_ON;
private static final int OFF = ShortMessage.NOTE_OFF;
private static final int CONTROL_CHANGE = ShortMessage.CONTROL_CHANGE;
private static final int CONTROLLER_TYPE = 127;
private static final int END_OF_TRACK = 47;
private static final String lines[]

= { "Doe, a deer, a femal deer",
"Ray, a drop of golden sun",
"Me, a name I call myself",
"Far, a long, long way to run",
"Sew, a needle pulling thread",
"La, a note to follow Sew",
"Tea, a drink with jam and bread",
"That will bring us back to Do (oh-oh-oh)\n" };

private int line = 0;

// Rest in next listings.
}

Java

public static void main(String[] args) {
SingingMusicPlayer singer = new SingingMusicPlayer();
singer.play();

}

private void play() {
try {

Sequencer sequencer = newSequencer();
sequencer.open();
int[] ints = new int[] {CONTROLLER_TYPE};
sequencer.addControllerEventListener(this, ints);
Sequence seq = new Sequence(Sequence.PPQ, 4);
singSong(seq);
sequencer.setSequence(seq);
sequencer.start();
sequencer.setTempoInBPM(120);

} catch(Exception exception) {
handleException(exception);

}
}

Java

6

private static void singSong(Sequence seq)
throws InvalidMidiDataException {

Track track = seq.createTrack();
int note = 64;
for (int tick = 0; tick < 60; tick += 4) {

addMidiEvent(track, ON, 1, note, VELOCITY, tick);
addMidiEvent(track, CONTROL_CHANGE, 1, CONTROLLER_TYPE, 0, tick);
addMidiEvent(track, OFF, 1, note, VELOCITY, tick + 2);
note ++;

}
}

Java

@Override
public void controlChange(ShortMessage event) {

System.out.println(lines[line]);
line = (line + 1) % lines.length;

}

Java

4 Combining Sound and Graphics

In this section we shall make some changes to the program from the previous section. Instead of printing

out text to the MIDI beats we shall generate a random rectangle which is coloured in a random colour.

We shall use an inner class for the event listener. �e remainder of this section lists the main methods.

�e techniques are di�erent from the techniques listed in the book.

7

import java.util.Random;
import javax.sound.midi.*;
import java.io.*;
import javax.swing.*;
import java.awt.*;

public class MiniMusicPlayer {
private static final int VELOCITY = 100;
private static final int ON = ShortMessage.NOTE_ON;
private static final int OFF = ShortMessage.NOTE_OFF;
private static final int CONTROL_CHANGE = ShortMessage.CONTROL_CHANGE;
private static final int CONTROLLER_TYPE = 127;
private static final int END_OF_TRACK = 47;
private final JFrame frame;

public static void main(String[] args) {
MiniMusicPlayer mini = new MiniMusicPlayer();
mini.play();

}

// Rest in remaining listings.
}

Java

�e constructor is pretty much straightforward. �e method play() is similar to the implementation

from the previous section. However, this time it’s the instance of the inner class which is the listener. We

can get a reference to the instance of the inner class by applying the method frame.getContentPane().

�is works because we set the content pane of the JFrame attribute frameusing the call frame.setContentPane(
panel) in the constructor. In the book they have both a JFrame attribute and a MyDrawPanel attribute

in the outer class, but this is a bit redundant. Rather than explicitly representing the MyDrawPanel as an

attribute, our current solution represents it implicitly. To get the MyDrawPanel out application computes
the MyDrawPanel from the JFrame object.

8

private MiniMusicPlayer() {
frame = new JFrame("My First Music Video");
// Create inner class listener object.
MyDrawPanel panel = new MyDrawPanel();
frame.setContentPane(panel);
frame.setBounds(30, 30, 300, 300);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}

private void play() {
try {

Sequencer sequencer = newSequencer();
sequencer.open();
MyDrawPanel panel = (MyDrawPanel)frame.getContentPane();
int[] ints = new int[] {CONTROLLER_TYPE};
sequencer.addControllerEventListener(panel, ints);
Sequence seq = new Sequence(Sequence.PPQ, 4);
singSong(seq);
sequencer.setSequence(seq);
sequencer.start();
sequencer.setTempoInBPM(120);

} catch(Exception exception) {
handleException(exception);

}
}

Java

�e following is the inner class.

private class MyDrawPanel extends JPanel
implements ControllerEventListener {

// Class constants and instance attributes

private MyDrawPanel() {
random = new Random();
setRandomColour();
setRandomSizeAndPosition();

}

// Instance methods.
}

Java

�e main reason why the inner class is so large is that it extends JPanel and implements the Con-
trollerEventListener interface. It needs to override the method paintComponent() from the JPanel

9

class and the method controlChange from the ControllerEventListener interface.

Note that the class MyDrawPanel extends a class and implements an interface.

�e following are the class constants and instance attributes of the inner class. �e class constants are

used to generate the random colours, the random width and height of the rectangle, and the random

position of the rectangle. �e instance attributes determine the current colour, the current width and

height, and the current position of the rectangle.

private static final int MAX_COLOUR_PART = 249;
private static final int MIN_SIZE = 10;
private static final int MAX_SIZE = 120;
private static final int MIN_POSITION = 10;
private static final int MAX_POSITION = 40;
private final Random random;
private Color colour;
private int width;
private int height;
private int xPosition;
private int yPosition;

Java

Note that our solution uses a Random object whereas the book uses the static method random() from

the Math class. Using the Random object is much easier than using Math.random().

�e instance methods setRandomColour() and setRandomSizeAndPosition() compute new ran-

dom values for the colour, the width and height, and the position of the rectangle. �ey do this by using

the auxiliary instance method randomSize(int min, int max) which computes a random int in the

range min–max.

private void setRandomColour() {
int redPart = random.nextInt(MAX_COLOUR_PART + 1);
int greenPart = random.nextInt(MAX_COLOUR_PART + 1);
int bluePart = random.nextInt(MAX_COLOUR_PART + 1);
colour = new Color(redPart, greenPart, bluePart);

}

private void setRandomSizeAndPosition() {
width = randomSize(MIN_SIZE, MAX_SIZE);
height = randomSize(MIN_SIZE, MAX_SIZE);
xPosition = randomSize(MIN_POSITION, MAX_POSITION);
yPosition = randomSize(MIN_POSITION, MAX_POSITION);

}

private int randomSize(int min, int max) {
return random.nextInt(max - min + 1) + min;

}

Java

�e �rst of the following two method listens to ControllerEvents. When this method is called, we

10

compute a new randomly coloured rectangle and draw it. �e other method is called when the method

repaint() is called. It simply draws the current rectangle using the rectangle’s current instance attribute

values.

@Override
public void controlChange(ShortMessage event) {

setRandomColour();
setRandomSizeAndPosition();
repaint();

}

@Override
public void paintComponent(Graphics g) {

g.setColor(colour);
g.fillRect(xPosition, yPosition, width, height);

}

Java

5 ForMonday

Study the lecture notes, and study Chapter 11.

11

	Outline
	An Animation
	First Attempt
	Fixing the Problem

	Non-gui Events
	Controller Events
	Implementation

	Sound and Graphics
	For Monday

